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Abstract
First- and second-order vibronic reduction factors are calculated analytically
for the H ⊗ (g ⊕ h) Jahn–Teller system in Ih symmetry. Results are given
as a function of the strength of the coupling of the H orbital to the vibrations
of h and g symmetries. As the product systems H ⊗ g and H ⊗ h contain
repeated representations, the calculations of many of the reduction factors
are more complicated than in other systems. These complications and their
implications are analysed in detail. This system models the ground state of
hole-doped C60 material, which has possible applications for high-temperature
superconductivity.

1. Introduction

The discovery of the fullerene molecule in 1985 was followed a few years later by observations
of superconductivity in various electron-doped C60 systems. Very recently, superconductivity
at higher temperatures has been observed in hole-doped C60 materials [1]. In the most recent
development, superconductivity at up to 117 K was observed after injecting holes into a crystal
of C60 which had been spiked with tribromomethane [2]. Fabrication of superconducting
electronic devices may now be possible. This is also a significant step in the search for a
room-temperature superconductor.

The interplay between strong electron–phonon interactions (the Jahn–Teller (JT) effect)
and electron correlations is generally regarded as a very important constituent in the theory
of high-temperature superconductivity [3–6]. Furthermore, it seems that coupling to the
intramolecular vibrational modes is more important than coupling to the intermolecular modes
between C60 molecules. There is certainly a strong correspondence between the strength of
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the electron–phonon interaction within the C60 molecule, as measured by the JT energy [7],
and the superconducting transition temperature Tc [1]. Also, Tc increases significantly in the
hole-based superconductors as the separation between the molecules increases [2]. It would
therefore appear that a likely mechanism through which the C60 molecules interact will be
dominated by a strong JT effect within the C60 molecules together with a weak cooperative-
like JT effect between molecules. It is therefore important to fully understand the role of the
JT effect within a C60 molecule.

One important aspect in the theory of the JT effect concerns vibronic (or Ham) reduction
factors (RFs) [8–10]. RFs enable effective Hamiltonians to be constructed which model the
effects of perturbations such as stress or spin–orbit coupling in a convenient manner. Effective
Hamiltonians are extremely useful in modelling spectroscopic data, for example, and the
inclusion of RFs is essential for any system with significant vibronic coupling. The RFs are
parameters multiplying the orbital operators contained within the perturbation, into which the
effect of the vibronic coupling is transferred. RFs are termed first and second order relating
to the order of the perturbation from which they arise. First-order RFs may be diagonal (with
the vibronic matrix element between tunnelling states of the same symmetry) or off diagonal
(with different symmetry tunnelling states). Physically, RFs arise from the involvement of the
phonons which increase the effective mass of the electrons. This has the effect of reducing
the energy gaps in the energy spectrum of the electrons, which are frequently measured in
spectroscopic-type experiments on such systems. The concept of RFs can also be used in
descriptions of the cooperative JT effect, which, as mentioned above, is likely to be important
for an understanding of superconductivity in the fullerides [11].

At a simple level, RFs can be treated as adjustable parameters with values chosen to fit
experimental data. However, much of the fundamental physics is missed in such an approach.
The RFs are not truly free parameters but parameters that depend upon the strength(s) of
the electron–vibration coupling(s) present. Therefore it is important to be able to determine
the variation of the RFs with the coupling strength(s) from a theoretical point of view.
The literature contains a considerable amount of information on cubic systems, with both
analytical and numerical calculations of both first- and second-order RFs. However, there
is much less information available to date on icosahedral systems, which is fundamental to
our understanding of the C60 molecule. In recent years there have been a number of papers
concerning the JT effect experienced by the anion of C60 (e.g. [12]), including some calculations
of RFs [13]. However, the JT effect experienced by the cation has received much less attention.
Some RFs were obtained before by Cullerne et al [14] for theH ⊗g problem. However, these
previous calculations gave only a numerical value for the infinite-coupling limit of the RF,
whereas in a real system the values of the RFs will depend upon the coupling strengths. This
paper attempts to fill some of this void by presenting analytical calculations of first- and
second-order RFs for the JT systems applicable to the cation C+

60. As well as the implications
for superconductivity, spectroscopic data involving C+

60 are accumulating rapidly, which should
provide valuable data on the JT effect within the cluster.

The electronic ground state of the hole-doped C60 molecule is an Hu HOMO level
(abbreviated henceforth toH ). This can couple to fourfold g and fivefold hmodes of vibration
of the C+

60 molecule in aH ⊗ (h⊕g) JT effect. This encompassesH ⊗h andH ⊗g JT effects,
in which the coupling to the g mode and h mode respectively is assumed to be negligible. In
addition to its application to the ground state of the C+

60 cation, this model is also applicable to
some of the excited states of the neutral C60 molecule and other ionized states.

In earlier work on the H ⊗ (h⊕ g) JT effect by the current group [15–17], a second
quantized, unitary transformation method was used to obtain analytical expressions for the
vibronic states of the system and their corresponding energies. In that work, it was shown that
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the lowest adiabatic potential energy surface (APES) can have minima of either D5d or D3d

symmetry, depending on the relative values of the coupling coefficients to each mode. These
minima were also found in the earlier work of Ceulemans and Fowler [18]. These results will
now be used to calculate expressions for RFs.

From a purely theoretical point of view, the H ⊗ (h⊕ g) JT system is of fundamental
importance for a number of different reasons. Firstly, it has been shown that tunnelling among
the D3d minima can produce a singlet ground state for strong coupling to the hmode, instead of
the expected quintet [15–17,19]. This is the only linear JT system known which can change the
symmetry of the ground state. However, this previous work only looked for solutions to the JT
interaction Hamiltonian. In any real system there will be additional effects, such as spin–orbit
coupling and strain, that must also be considered. The effect of these perturbations is as yet
unknown. Secondly, theH⊗(h⊕ g) JT effect includes repeatedG andH representations in its
Clebsch–Gordan (CG) series [7, 15, 20]. This does not occur in other JT systems. Following
the work of Cullerne et al [14], we shall show how the whole concept of RFs needs to be
revised when dealing with repeated roots. Instead of being simply parameters, both the first-
and second-order RFs must be formulated in terms of 2 × 2 matrices. The analysis described
below explains how the matrices may be determined in a usable form for both first- and second-
order RFs. Here we shall give detailed results for the RFs as a function of both the g and h
coupling strengths. The results will be shown to agree with the those of [14] in the limit of
strong coupling to the g mode.

2. The theoretical model; summary of previous results

Previous work by the current authors has studied the generalH ⊗ (h ⊕ g) JT system [15–17].
The problem was specified in terms of linear coupling constantsVha ,Vhb for the two components
of the repeated H mode (termed Ha and Hb), and a linear coupling constant Vg for the G
mode. a and b were taken to label the two columns of CG coefficients in table 11 of [21] for
the repeated root. The oscillator frequencies for theH andGmodes are taken to be ωh and ωg
respectively. The lowest APES was investigated and found to contain minima of D5d symmetry
ifV 2

hb
> (5/9)(V 2

ha
+(ω2

h/ω
2
g)V

2
g ), and minima of D3d symmetry otherwise. Symmetry-adapted

vibronic states were then obtained by the use of an analytical unitary transformation combined
with projection operator techniques [22] to allow for tunnelling between equivalent minima.
From D5d wells, symmetry-adapted vibronic states of symmetryH andA are generated, whilst
from D3d wells symmetry-adapted vibronic states of symmetries H , A and G arise [17].

3. First-order RFs

When an electronic perturbation C�γ of symmetry � with component γ is applied to a JT
system, it is often useful to be able to include it in an effective Hamiltonian involving just
the ground electronic states rather than the more complicated vibronic tunnelling states. The
Hamiltonian describing the effect of perturbation within electronicH states |Hγi ) can be written
in the form

H(1)(�) =
∑
γ

W�γC�γ (1)

where the C�γ are orbital operators and theW�γ are corresponding coefficients. The C�γ can
be expressed in terms of CG coefficients 〈�γHσj |Hσi〉 by the relation [21]

C�γ =
∑
σiσj

|Hσi)(Hσj |〈�γHσj |Hσi〉. (2)
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If the vibronic states are written in the form |0, Hσi〉, the usual definition of a first-order Ham
RF within the ground state is

K
(1)
HH (�) = 〈0, Hσi |C�γ |0, Hσj 〉

(Hσi |C�γ |Hσj) = 〈0, Hσi |C�γ |0, Hσj 〉
〈�γHσj |Hσi〉 . (3)

The RFs are ‘numbers’ (dependent upon the coupling strengths and frequencies) which are
independent of the components σi . However, there are problems in using this definition when
repeated representations are involved. The RF is then no longer independent of the components
used and must therefore be expressed in the form of a matrix. Consequently, this must be
reflected in the form of the effective Hamiltonian. Further complications occur when excited
tunnelling states are considered as they usually have different symmetries from the original
electronic state, and also when the symmetry of the ground tunnelling state is different from
that of the original electronic state, as occurs for the H ⊗ (h⊕ g) JT system involving the
D3d wells [15]. In this case, we have to consider the problem as a six-dimensional (A ⊕ H)

system in strong coupling, and an alternative definition is thus needed. However, we shall not
consider the details of these additional complications further here.

Within the icosahedral group, there are several cases in which the Kronecker product of
two irreducible representations (irreps) contains an irrep. twice. These are

2H ∈ H ⊗H

2G ∈ H ⊗H

2H ∈ H ⊗G.

(4)

As the CG coefficients and orbital basis states we use are all real, the Wigner–Eckart theorem
in the cases considered here takes the form [23]

(Hσi |C�γ |Hσj) =
∑
p

〈H ||C�||H 〉p 〈�γHσj |Hσi〉p (5)

where the 〈H ||C�||H 〉p are reduced matrix elements and p is a multiplicity label introduced
to distinguish between the repeated representations of �. These electronic matrix elements are
expressed as a linear combination of the related CG coefficients in the two-dimensional space
of the reduced matrix elements.

Usually, when calculating first-order RFs, the same reduced matrix element occurs in both
the vibronic and electronic matrix elements and so cancels in the final expression. However, this
is not true for repeated representations where there is more than one reduced matrix element.
In order to see the effect of having a repeated representation in the Kronecker product, it will
be useful to look in more detail at the example of H in H ⊗ (g ⊕ h) systems. We proceed
by choosing ‘special’ operators, which will be referred to as basis operators, which have one
reduced matrix element equal to one and the other equal to zero. Any real operator may be
described by a linear combination of two such basis operators. For the H ⊗ (g ⊕ h) case,
it is possible to define unitary basis operators CHaγa and CHbγb for which the reduced matrix
elements are

〈H ||CHa ||H 〉a = 1 〈H ||CHa ||H 〉b = 0

〈H ||CHb ||H 〉a = 0 〈H ||CHb ||H 〉b = 1
(6)

such that, in the electronic basis, we have

(Hσi |CHaγa |Hσj) = 〈HaγaHσj |Hσi〉
(Hσi |CHbγb |Hσj) = 〈HbγbHσj |Hσi〉

(7)
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where Ha and Hb refer to the first and second columns respectively in the table of CG
coefficients given in [21]. In this case, the H -type symmetry operator may be expressed
as a matrix which generalizes the definition [21]

CH =
(
CHa 0

0 CHb

)
. (8)

These operators may be generalized and expanded in a vibronic basis so that

〈0, Hσi |CHaγa |0, Hσj 〉 = 〈HaγaHσj |Hσi〉K(1)
HH (H, aa) + 〈HbγbHσj |Hσi〉K(1)

HH (H, ab)

〈0, Hσi |CHbγb |0, Hσj 〉 = 〈HbγbHσj |Hσi〉K(1)
HH (H, bb) + 〈HaγaHσj |Hσi〉K(1)

HH (H, ba)

(9)

where the various factors K(1)
HH (H, pq) form a 2 × 2 matrix

K
(1)
HH (H) =

(
K
(1)
HH (H, aa) K

(1)
HH (H, ab)

K
(1)
HH (H, ba) K

(1)
HH (H, bb)

)
(10)

in the basis operator space. This is the equivalent of a single RF for non-simply-reducible
products. The new RFs K(1)

HH (H, pq) may be found provided the CG coefficients are first
normalized as in [21] and obey the orthogonality condition

∑
σiσj

〈Hσi |p�γ Hσj 〉〈p′�γ ′ Hσj |Hσi〉 = [H ]

[�]
δλλ′δpp′ (11)

with the result that

K
(1)
HH (�, pq) =

∑
σiσj

〈0, Hσi |Cp�γ |0, Hσj 〉 〈Hσi | q�γ ′Hσj 〉. (12)

It should be noted that, in using the generalized definition of RFs given above, the values
of the RFs obtained will depend on the separation used for the Ha and Hb components. In
particular, the RF matrix (10) may be brought into diagonal form by an appropriate coordinate
transformation and corresponding similar redefinition of the CG coefficients. We shall show
that the CG coefficients which diagonalize the matrixK(1)

HH (H) are in fact those of Fowler and
Ceulemans [21], in which a twofold axis is used as the axis of quantization.

3.1. Reduction factors for the D5d minima

In order to calculate the RFs of operators belonging to simply reducible representations, it is
necessary to calculate the vibronic matrix elements in equation (3). These can be obtained using
the symmetry-adapted states derived in [?,15–17]. The symmetry-adapted states |0, Hσj 〉 are
expressed in terms of a linear combination of well states |ψ ′

k; 0〉, namely

|0, Hσj 〉 =
∑
k

c
j

k |ψ ′
k; 0〉 (13)

where the sum over k is over all well states and the coefficients cjk are those given in the
expressions for the symmetry-adapted states derived in [15–17]. Note that the ket |ψ ′

k; 0〉 is
used to denote a vibronic well state (i.e. it contains the unitary shift transformation times a
zero phonon ket), while below the ket |ψk) will be used to represent the ground electronic
state in the well k. It is then straightforward to write the well matrix elements of the electronic
operator in terms of the well overlaps, leading to

K
(1)
HσiHσj

(�γ ) =
∑
k,l

cikc
j

l Skl
(ψk|C�γ |ψl)

〈�γHσj |Hσi〉 (14)
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where Skl is the oscillator overlap between any pair of wells such as k and l [17]. This equation
is used in this paper to calculate the RFs of all operators which do not belong to repeated
representations. For those which do, a slightly different version of this equation is used,
derived in a way similar to the above but beginning with equation (12).

Before embarking upon any detailed calculations, it is useful to check which operators
need to be considered; first-order operators of A symmetry are not reduced, and some others
may be automatically zero from group theory. In order for an operator to have a non-zero
matrix element within an electronic state of symmetry �, its symmetry must be contained
within the Kronecker product � ⊗ �. For H states, we therefore need

H ⊗H = A⊕ T1 ⊕ T2 ⊕ 2G⊕ 2H. (15)

Thus operators of symmetry T1, T2, G and H must all be considered.
So as to simplify the resulting expressions for the RFs, it is useful to write them in the

form

K
(1)
�i�j

(�γ ) = N�iN�j f�i�j (�γ , pq) (16)

where N�i is the normalization factor for the tunnelling state of symmetry �i . Reference [17]
gives explicit forms for theN�i in terms of the overlaps between the vibronic well states. Thus
for D5d wells, we can write

N
D5d
H = (1 − S

D5d
AB )

−1/2

N
D5d
A = (1 + 5SD5d

AB )
−1/2

(17)

where SD5d
AB = −s ′/5 is the overlap between the ground states in two D5d wells and s ′ =

exp (−XD5d) is the overlap between the oscillator functions in the two wells. XD5d = 12k2
hb
/25

and khb = Vhb/(h̄µω
3
h)

1/2 is a scaled coupling constant. pq is included as an argument of
f�i�j for � = G and H to give the components p, q of the repeated representation � in the
space of the basis operators. This label is omitted for � = T1 and T2. In this way, the RFs for
operators within the H tunnelling ground state may be written in terms of the factors

f
D5d
HH (T1) = f

D5d
HH (T2) = f

D5d
HH (G, aa) = f

D5d
HH (G, bb) = f

D5d
HH (H, aa) = −6SD5d

AB

f
D5d
HH (H, bb) = 4

5 − 2SD5d
AB

f
D5d
HH (G, ab) = f

D5d
HH (G, ba) = f

D5d
HH (H, ba) = f

D5d
HH (H, ab) = 0.

(18)

Using the CG coefficients of [21], it can be seen that all the off-diagonal components of the
RFs are zero.

We shall now consider operators connecting the ground states H and the excited singlet
tunnelling state A. Although there is a repeated H representation within H ⊗ H (i.e. within
the electronic states), there is no repeated representation in A ⊗ H (i.e. within the vibronic
states). Thus f D5d

AH (Ha) is zero. We then find that

f
D5d
AH (Hb) = 2

5 + 2SD5d
AB . (19)

All other RFs connecting the A and H states are equal to zero by symmetry.
The non-zero D5d RFs are plotted in figure 1 as a function of the scaled coupling strength

khb . It can be seen that all of the RFs of anti-symmetric operators (such as T1, T2 . . .) tend
to zero in the strong-coupling limit. This may also be explained by considering the infinite-
coupling limit of equation (10). In this limit, the well states become orthogonal, so that the
equation may be brought into the form
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Figure 1. Variation with the coupling strength khb of the non-zero first-order RFs for the H ⊗ h

problem derived using D5d minima.

K
(1)
HσiHσj

(�γ ) · 〈�γHσj |Hσi〉 =
∑
k

cikc
j

k (k|C�γ |k). (20)

It is clear that, if Hσi and Hσj are interchanged, the right-hand side of the above equation
will not change sign although the CG coefficient on the left will (as the electronic operator
is anti-symmetric). The RF itself will not change sign as it is the ratio of an electronic and
vibronic matrix elements which is involved and both change sign. Thus the RF must be zero
in this limit.

3.2. Reduction factors for the D3d minima

For D3d wells, we proceed in the same way as for the D5d wells but noting that the ten wells are
not all equidistant from each other. Therefore, there are two different overlaps between ground
states in D3d wells. These are denoted by SD3d

ab and SD3d
ae [17], where, in terms of notation used

in this paper,

S
D3d
ab = − 1

3 s
2S

SD3d
ae = 1

3 sS
2

(21)

where S = exp(−XD3d
) and s = exp(−X′

D3d
), with XD3d = 5k2

g/27, X′
D3d

= 4k2
ha
/27,

kg = Vg/(h̄µω
3
g)

1/2 and kha = Vha/(h̄µω
3
h)

1/2. The normalization factors are

N
D3d
H = (1 − 2SD3d

ab + SD3d
ae )

−1/2

N
D3d
G = (1 + SD3d

ab − 2SD3d
ae )

−1/2

N
D3d
A = (1 + 6SD3d

ab + 3SD3d
ae )

−1/2.

(22)
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Figure 2. Variation with the coupling strength kha of the non-zero first-order RFs for the H ⊗ h

problem (kg = 0) derived using D3d minima.

The f -factors within the H ground states are then found to be

f
D3d
HH (T1) = f

D3d
HH (T2) = − 2

3 (4S
D3d
ab − 5SD3d

ae )

f
D3d
HH (G, aa) = 2

9 (2 − 9SD3d
ab + 12SD3d

ae )

f
D3d
HH (G, bb) = −6 SD3d

ab

f
D3d
HH (H, aa) = 2

9 (2 − 18SD3d
ab + 3SD3d

ae )

f
D3d
HH (H, bb) = −2(2SD3d

ab − SD3d
ae )

f
D3d
HH (G, ab) = f

D3d
HH (G, ba) = f

D3d
HH (H, ab) = f

D3d
HH (H, ba) = 0.

(23)

The corresponding RFs for the H ⊗ h problem (i.e. when the coupling to the g mode is taken
to be zero) are shown in figure 2 as a function of the scaled coupling strength kha .

Using the above formulae, it is found that the RF matrix of H operators in the infinite-
coupling limit of H ⊗ g (with zero h coupling) takes the form

K
(1)
HH (H) =

(
4
9 0
0 0

)
(24)

compared with the form given by Cullerne et al [14],

K
(1)
HH (H)cull =

(
2/7 2

√
5/21

2
√

5/21 10/63

)
. (25)

However, diagonalization of Cullerne’s matrix results in the eigenvalues 4/9 and 0, showing
that the discrepancy is due only to the different separation used for the componentsHa andHb.
Thus the CG coefficients of Fowler and Ceulemans [21], which were shown in the earlier work
on tunnelling splittings [15–17] to separate the pentagonal and trigonal modes, also result in a
diagonal form for the RF matrices.
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Figure 3. Variation with the coupling strength kg of the non-zero first-order RFs for the H ⊗ g

problem (kha = 0).

The f -factors within the G tunnelling states are found to be

f
D3d
GG (T1) = −2

√
10

3
(S

D3d
ab + SD3d

ae )

f
D3d
GG (T2) = 2

√
10

3
(S

D3d
ab + SD3d

ae )

f
D3d
GG (Ga) = −2

√
2

9
√

5
(1 − 9SD3d

ab − 12SD3d
ae )

f
D3d
GG (Ha) = 4

9 (1 − 3SD3d
ae ).

(26)

The corresponding RFs are shown in figure 3 as a function of kg for the H ⊗ g problem (i.e.
when the coupling to the hmode is taken to be zero). f D3d

GG (Gb) and f D3d
GG (Hb) are both zero due

to the presence of a repeatedG representation within the electronic basis, but not within theG
vibronic tunnelling states. We note also that the factor K(1)

GG(Ga) changes sign from positive
in weak coupling to negative in strong coupling; this could be important in the modelling of
experimental data when this RF is present.

The factors between the G and H tunnelling states are given by

f
D3d
GH (T1) = −2

√
5

3
(S

D3d
ab + SD3d

ae )

f
D3d
GH (T2) = 2

√
5

3
(S

D3d
ab + SD3d

ae )

f
D3d
GH (Ga) = 2

√
5

9
(1 − 3SD3d

ae )

f
D3d
GH (H, aa) = 2

9
√

5
(4 + 9SD3d

ab − 3SD3d
ae )

f
D3d
GH (H, bb) = 2SD3d

ab + 2SD3d
ae

f
D3d
GH (Gb) = f

D3d
GH (H, ab) = f

D3d
GH (H, ba) = 0.

(27)
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Finally, the off diagonal RFs for the singlet tunnelling state of the D3d minima may be
written in terms of the coefficients

f
D3d
AG (Ga) = 2

3
√

5
(1 + 6SD3d

ab + 3SD3d
ae )

f
D3d
AH (Ha) = 2

3
√

5
(1 + 6SD3d

ab + 3SD3d
ae )

f
D3d
AG (Gb) = 0

f
D3d
AH (Hb) = 0.

(28)

In the limit of strong coupling to the h mode, the singlet tunnelling ground state has been
shown to become the ground state of the system [15–17]. While operators of T1, T2,G and
H symmetries may be non-zero within the H electronic basis, only operators of G and H
symmetry have non-zero matrix elements for the A symmetry tunnelling state. Further, these
matrix elements are off diagonal and so they are only important if the perturbation is sufficiently
large that the different tunnelling states are admixed. An important consequence of an A type
ground state is therefore the quenching of non-totally symmetric perturbations on the system.

Finally, it should be mentioned that all the first-order RFs obey certain sum rules as detailed
in previous work [24].

4. Second-order RFs

4.1. General principles

In strong coupling, second-order RFs become particularly important in modelling real systems
as many first-order RFs approach zero. Second-order RFs are more complicated to calculate
theoretically than first-order RFs as they involve a summation over an infinite set of excited
states. Nevertheless, second-order RFs have been calculated both numerically [25] and
analytically for many cubic systems. Among the analytical approaches, Bates and Dunn [26,27]
calculated second-order RFs using states derived from the unitary transformation method
already mentioned in this paper. Based on the symmetry properties of the vibronic ground
states, further papers [28, 29] discussed a more general method for the derivation of second-
order RFs. It was shown that such RFs could be deduced from the evaluation of the sums of
various overlaps of phonon states.

Very recently, similar calculations have also been undertaken for the second-order RFs for
the T ⊗h icosahedral JT systems [13]. On account of the complexity involved, a simplification
was made by taking the excited states to be the harmonic-oscillator states associated with the
wells, which are strictly only valid in the infinite-coupling limit, instead of the more accurate
symmetry-adapted excited vibronic states [30]. In this paper, we apply the same procedures
to the H ⊗ (h ⊕ g) JT system. For simplicity, we give details only for cases in which the
perturbations are the same, although the methods used can easily be extended to all cases.
Again, index labels p and q will need to be added to distinguish between repeated roots as in
the case of the first-order RFs.

Substituting equation (1) into the second-order Hamiltonian

H(2)(� ⊗ �) = H(1)(�)G(H)H(1)(�) (29)

and using equations (15)–(18) of [13] for T ⊗ h, with H replacing T1 in the Green operator
G, we obtain the general expression

K
(2)
M (� ⊗ �) = 〈0, Hσi |L(2)Mµ(� ⊗ �)|0, Hσj 〉

(Hσi |L(2)Mµ(� ⊗ �)|Hσj)
(30)
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for second-order RFs where there are no repeated roots. In equation (30), we define

L(2)Mµ(� ⊗ �) =
∑
γj

∑
γk

C+
�γk
G(H)C�γj 〈�γj�γk|Mµ〉 (31)

and

L
(2)
Mµ(� ⊗ �) =

∑
γj

∑
γk

C+
�γk
C�γj 〈�γj�γk|Mµ〉 (32)

where M ∈ � ⊗ �. The second-order contributions to the effective Hamiltonian are then
expressed in the form [13]

H(2)
eff (� ⊗ �) =

∑
Mµ

∑
γj

∑
γk

W +
�γk
W�γj 〈�γj�γk|Mµ〉K(2)

M (� ⊗ �)L
(2)
Mµ(� ⊗ �). (33)

Each of the repeated representations (� = H and G) must be treated in a similar way to
the first-order RFs by expressing the results in terms of a 2 × 2 matrix. Thus equations (29)
and (32) must be rewritten as

H(2)(�p ⊗ �q) = H(1)(�p)G(H)H(1)(�q) (34)

and

L
(2)
Mµ(�p ⊗ �q) =

∑
γj

∑
γk

C+
�pγk

C�qγj 〈�pγj�qγk|Mµ〉 (35)

respectively. For � = H and M = Ha , these operators are

L
(2)
Haµ
(Ha ⊗Ha) = 1

12CHaµ

L
(2)
Haµ
(Hb ⊗Hb) = − 1

4CHaµ

L
(2)
Haµ
(Ha ⊗Hb) = L

(2)
Haµ
(Hb ⊗Ha) = − 1

4CHaµ.

(36)

Similarly, for M = Hb, we obtain

L
(2)
Hbµ
(Ha ⊗Ha) = − 1

4CHbµ

L
(2)
Hbµ
(Hb ⊗Hb) = 3

4CHbµ

L
(2)
Hbµ
(Ha ⊗Hb) = L

(2)
Hbµ
(Hb ⊗Ha) = − 1

4CHaµ.

(37)

The above results shows that the operators L(2)Hµ(�p ⊗ �q) are proportional to the CG
operators CHpµ and thus no mixing between the labels a and b occurs. Hence the Wigner–
Eckart theorem given in equation (5) applies in exactly the same way as for theCHpµ operators.
Thus again, using the CG coefficients of Fowler and Ceulemans [21], no mixing occurs in the
second-order RF. In other words, there are no off-diagonal components such asK(2)

Ha
(Hp⊗Hq)ab

in the matrix representing the second-order RF with repeated representations. The matrix
corresponding to these RFs is thus

K
(2)
H (Hp ⊗Hq) =

(
K
(2)
Ha
(Hp ⊗Hq) 0

0 K
(2)
Hb
(Hp ⊗Hq)

)
. (38)

A similar diagonal matrix is obtained when M = G for K(2)
G (Gp ⊗ Gq). However, all the

elements K(2)
Gb
(Gp ⊗ Gq) = 0 and so they do not occur in the effective Hamiltonian. When

p �= q, we find that K(2)
Ga
(Ga ⊗Gb) = K

(2)
Ga
(Gb ⊗Ga) = 0. Hence the matrix is

K
(2)
G (Gp ⊗Gp) =

(
K
(2)
Ga
(Gp ⊗Gp) 0

0 0

)
. (39)
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For a (T1 ⊗ T1) type of perturbation for M = H , a second type of mixing of the repeated
H representation occurs. To illustrate this point, we consider equation (35), which becomes

L
(2)
Hµ(T1 ⊗ T1) = −

√
3
8CHaµ −

√
5

24CHbµ. (40)

As an example, when we use as basis components θ, ε, 4, 5, 6 for the H ground state, for the
component µ = 6 we have

CHa6 =




0 0 0 0 1√
6

0 0 0 0 0
0 0 0 − 1√

3
0

0 0 − 1√
3

0 0
1√
6

0 0 0 0




and CHb6 =




0 0 0 0 0
0 0 0 0 − 1√

2
0 0 0 0 0
0 0 0 0 0
0 − 1√

2
0 0 0


 .

(41)

In this case, the second-order RF depends upon the matrix element chosen, as the CG operators
CHaµ and CHbµ do not contribute simultaneously to the same matrix element. For example,
matrix elements such as (θ |L(2)H6(T1 ⊗ T1)|6) come from Ha only. Therefore the second-
order RFs calculated using such matrix elements are all equal to each other and written as
K
(2)
Ha(T1 ⊗T1), where the index of the involved operatorCHaµ is displayed. Hence two different

RFs are then obtained which have meanings only within the matrix concept. Since T1 ⊗ T1

contains only one H , the second-order RF matrix for this perturbation becomes

K
(2)
H (T1 ⊗ T1) =

(
K
(2)
Ha
(T1 ⊗ T1) 0

0 K
(2)
Hb
(T1 ⊗ T1)

)
. (42)

4.2. Evaluation of second-order RFs

As in the case of the first-order RFs, we consider the vibronic states derived from the D3d and
the D5d wells separately. However, as the formulae are much more complicated than for the
first-order RFs, we shall only present results for the H ⊗ h and H ⊗ g systems separately.
This means that for D3d wells, we shall take either the coupling to the h mode or the coupling
to the g mode to be zero.

The second-order RFs in equation (30) have been evaluated analytically for any symmetry
of repeated perturbation using the appropriate states and operators. All the calculations involve
a linear combination of anm-dimensional sum which can be subsequently simplified into one-
dimensional sums [13]. We find that the second-order RFs for the H ⊗ g JT system can be
expressed in the form

K
(2)
M (� ⊗ �) = −2

9

1

h̄ωg

S2(
3 + 2S + S2

)GM(�). (43)

The functions GM(�) are given in table 1. The results are presented in terms of the functions
Fn = f (nXD3d) with n = 1–4, where the function f is defined by

f (Z) =
∞∑
n=1

Zn

(E + n)n!
. (44)

E is the difference in energy between the excited vibrational phonon states and the ground
states in units of h̄ωg , which is given by

E = 4(1 + S)S

3 + 2S + S2
XD3d . (45)
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Figure 4. Variation with the coupling strength kg of the second-order RFs for the H ⊗ g problem
with perturbations of T1 and T2 symmetries.

The resulting RFs are also displayed graphically in figure 4. We note that in all the cases
described,

K
(2)
M (T1 ⊗ T1) = K

(2)
M (T2 ⊗ T2) (46)

and thatK(2)
T1
(T1⊗T1) andK(2)

T2
(T2⊗T2) change sign from negative in weak coupling to positive

in the strong-coupling regime. This change in sign arises because the contributions to these
factors are dominated by the contribution from the F1 term (see table 1) in strong coupling
as the other terms present are multiplied by either S or S2, which die away exponentially as
the coupling strength increases. Thus the overall contribution to this RF from the F1 term is
positive.

In a similar manner, results can be obtained for theH ⊗h system. For D3d wells, the RFs
are of the form

K
(2)
M (� ⊗ �) = −2

9

1

h̄ωh

s2(
3 + 2s + s2

)GM(�). (47)

The functions GM(�) are given in table 2 in terms of the functions fn = f (nX′
D3d
) with

n = 1–4, taking the energy E in f to be

E = (1 + 4s)s

3 + s + 2s2
X′

D3d
. (48)

Finally, we shall present some results for the H ⊗ h system involving D5d wells. In this
case, the RFs are of the form

K
(2)
M (� ⊗ �) = −6

5

1

h̄ωh

(s ′)2

(5 + s ′)
GM(�). (49)

The functions GM(�) are given in table 3 in terms of the functions g1 = f (XD5d) and
g2 = f (2XD5d), taking the energy E in f to be

E = s ′

5 + s ′
XD5d . (50)
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Table 1. The functions GM(�) used to define the second-order RFs for the H ⊗ g JT system.

� M GM(�)

T1, T2 A (5F3 + 15F4) S
2 + (10F2 + 10F1) S + 12F2 + 3F1

T1 10S2F3 + (20F1 + 20F2) S − 6F1

Ha
20
3 (F3 + F4) S

2 + 20
3 (F1 + 4F2) S + 8

3 (F1 + 2F2)

Hb 20F3S + 4F1 + 16F2

Ga A 2(F3 + 6F4)S
2 + 4(F1 + 3F2)S − 4F1 + 9F2

T1 8F3S
2 + 8(F1 + F2)S

T2 8F3S
2 + 8(F1 + F2)S

Ga 4(−2F3 + 3F4)S
2 + 16(−F1 + 2F2)S − 2(7F1 − 2F2)

H 16S2F3 + 8(F1 + F2)S + 4(F1 + F2)

Gb A 18F1 + 342
11 F2

T1 24F1

T2 24F1

Ga 2(9F1 + F2)

H 12(3F1 + F2)

Ha A (−F3 + 3F4)S
2 + 2(−F1 + 3F2)S + 5F1 + 18F2

T1 14S2F3 + 8(−5F1 − 2F2)S + 42F1

T2 14S2F3 + 8(−5F1 − 2F2)S + 42F1

Ga 3(F3 − 2F4)S
2 + 6(6F1 + F2)S + 9(F1 + 2F2)

Gb 17F1 + 14SF2 − S2F3

Ha 4(F3 + 3F4)S
2 + 4(2F1 − 13F2)S + 4(37F1 − 8F2)

Hb −4S2F3 + 4(4F1 + 3F2)S − 4F1

Hb A 3(F3 + 3F4)S
2 + 6(F1 + F2)S + 9(F1 + 2F2)

T1 −6F1 + 24SF2 + 6S2F3

T2 −6F1 + 24SF2 + 6S2F3

Ga 3(F3 − 2F4)S
2 + 6(6F1 + F2)S + 9(F1 + 2F2)

Gb 9F1 + 54SF2 − 9S2F3

Ha 12(F3 + F4)S
2 − 12SF2 + 36F1

Hb 4S2F3 + 4(2F1 + 5F2)S + 12F1

The RFs are presented graphically in figure 5. In this figure, the curves are labelled as

(a) K(2)
T1
(Hb ⊗Hb), K

(2)
T2
(Hb ⊗Hb), K

(2)
Ga
(Hb ⊗Hb), K

(2)
Gb
(Hb ⊗Hb), K

(2)
Ha
(Hb ⊗Hb)

(b) K(2)
Hb
(Hb ⊗Hb)

(c) K(2)
A (Hb ⊗Hb)

(d) K(2)
T1
(T1 ⊗ T1), K

(2)
H (T1 ⊗ T1), K

(2)
T1
(Ga ⊗ Ga), K

(2)
G (Ga ⊗ Ga), K

(2)
H (Ga ⊗ Ga),

K
(2)
T1
(Ha ⊗Ha), K

(2)
T2
(Ha ⊗Ha), K

(2)
Ga
(Ha ⊗Ha), K

(2)
Gb
(Ha ⊗Ha), K

(2)
Ha
(Ha ⊗Ha)

(e) K(2)
Hb
(Ha ⊗Ha)

(f) K(2)
A (T1 ⊗ T1), K

(2)
A (Ga ⊗Ga), K

(2)
A (Ha ⊗Ha).

The RFs labelled a in figure 5 are always positive whereas all the other RFs are negative.
The reason for this is apparent from table 3; each of these factors has GM(�) = −2g1 so
that the RFs are always positive. The RFs labelled f in the same figure are always negative
because they are dominated by the term in g2; this can be seen from using the expansion of the
function f (Z) as given in [31].
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Table 2. The functions GM(�) used to define the second-order RFs for the H ⊗ h JT system
involving D3d wells.

� M GM(�)

T1 A (3f2 + 12f4 − f3)s
2 + (10f1 + 10f2)s + 15f2

T1 (−6f2 + 10f3)s + 20f2 + 20f1

Ha
2
3

{
(4f2 + 8f4 − f3)s

2 + (40f1 + 10f2)s + 10f2
}

Hb 14f3s + 4f2 + 16f1

Ga A (−4f2 + f3 + 9f4)s
2 + 4(3f1 + f2)s + 12f2

T1 6f3s
2 + 8(f1 + f2)s

T2 6f3s
2 + 8(f1 + f2)s

G 2(2f4 − 7f2 + 8f3)s
2 + 16(−f2 + 2f1)s + 12f2

H 2(−f3 + 2f4 + 2f2)s
2 + 8(f2 + f1)s

Gb A 18
11 (f2 + 3f3 + 19f4)s

2

T1 6(4f2 + 5f3)s
2

T2 6(4f2 + 5f3)s
2

G 2(9f2 + 17f3 + f4)s
2

H 6(6f2 + f3 + 2f4)s
2

Ha A (5f2 + 7f3 + 18f4)s
2 + (6f1 − 2f2)s + 3f2

T1 6(7f2 + 5f3)s
2 + 8(−2f1 − 5f2)s

T2 6(7f2 + 5f3)s
2 + 8(−2f1 − 5f2)s

Ga
1
7

{
(124f3 + 46f4 + 55f2)s

2 + 2(f1 − 2f2)s + 6f2
}

Gb 17f2s
2 + 14f1s

Ha 2(−16f4 + 74f2 − 13f3)s
2 + 4(2f2 − 13f1)s + 12f2

Hb 2(−2f2 + 5f3)s
2 + 4(3f1 + 4f2)s

Hb A 3(6f4 + 3f2 + f3)s
2 + 6(f2 + f1)s + 9f2

T1 6(−f2 + 5f3)s
2 + 24f1s

T2 6(−f2 + 5f3)s
2 + 24f1s

Ga 3(6f4 + 3f2 − 4f3)s
2 + 6(6f2 + f1)s − 6f2

Gb 9f2s
2 + 54f1s

Ha 6(6f2 + f3)s
2 − 12sf1 + 12f2

Hb 2(6f2 + 5f3)s
2 + 4(5f1 + 2f2)s

Table 3. The functions GM(�) used to define the second-order RFs for the H ⊗ h JT system
involving D5d wells.

M GM(T1) GM(Ga) GM(Ha) GM(Hb)

A g1 + 5g2 g1 + 5g2 g1 + 5g2
1
3 (−g1 + 5g2)

T1 6g1 6g1 6g1 −2g1

T2 6g1 −2g1

Ga 6g1 −2g1

Gb 6g1 −2g1

Ha 6g1 6g1 6g1 −2g1

Hb 2g1 + 4g2 6g1 2g1 + 4g2
2
9 (5g1 + 2g2)

5. Discussion and conclusions

The above calculations show that the signs of a given first- or second-order RF can change as the
coupling strength increases from small to large values. Also, second-order RFs are important
as they can generate contributions to the effective Hamiltonian which may be significantly
larger than and different from those of first order. Any analysis of experimental spectroscopic
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Figure 5. Variation with the coupling strength khb of the second-order RFs for theH ⊗ h problem
labelled as in the text.

data will involve the energy levels responsible for the observed spectral lines. Consequently
both the magnitudes and signs of both types of RF which contribute to such an analysis are of
major importance.

We have obtained analytical expressions for the first- and second-order RFs for theH ⊗g
JT system, and the H ⊗ h system involving either D3d or D5d wells. The first-order RFs have
been calculated by using the symmetry-adapted ground vibronic states of the system. The
same vibronic ground states have also been used for the second-order RFs together with the
oscillator excited states located within the wells. The complete range of all possible relevant
RFs is clearly formidable and thus only a small fraction of the results can be presented here.
Sufficient details have been given to enable the reader to evaluate any other factors should they
be required.

From a general theoretical viewpoint, the most significant advance concerns the treatment
of repeated representations. We have shown that for both first- and second-order RFs, the
effects of vibronic reduction must be expressed in terms of 2×2 matrices when a repeated root
is involved, rather than simply numbers multiplying orbital terms. Nevertheless, the concept
of RFs still holds within this more generalized definition. The precise form of the matrices
obtained depends upon the choice made for the CG coefficients. It has further been found
that the set of CG coefficients used by Fowler and Ceulemans [21] results in a diagonal form
for the 2 × 2 matrices for the repeating H in the direct product H ⊗ H , which then results
in two uncoupled RFs. Generally, CG coefficients depend on the basis functions used in the
corresponding coupling of angular moments and, in particular, on the choice of a quantization
axis. Fowler and Ceulemans [21] use one of the twofold symmetry axes of the icosahedron
as the quantization axis for the corresponding basis set. In this case the matrix 6 × 6 for the
repeating H in the direct product H ⊗ H resolves into two blocks 3 × 3. Obviously, this
does not transform the symmetry group Ih into a simply reducible one. No basis set for a
non-simply-reducible group can resolve all coupling matrices for all repeating representations



H ⊗ (g ⊕ h) Jahn–Teller reduction factors 1335

in all direct products �1 ⊗ �2. However, for the five-dimensional representation l = 2, there
is a symmetry reduction chain, U(5) ⊂ SO(5) ⊂ SO(3) ⊂ Ih, in which degeneracy is
sequentially lifted without repeating representations. The special choice of the basis set that
introduces orthogonality of the two different representations H in the direct product H ⊗ H

can be understood as the one that originates from different irreps of a higher-symmetry group.
This can be seen if the corresponding genealogical quantum numbers are written explicitly.
As a whole, this interesting problem goes far beyond the scope of our paper and will not be
considered further here.

As stated in the introduction, it may be anticipated that a modelling of the electron–phonon
interaction in the hole-doped C60 molecule via the JT effect can produce valuable insight into
this most interesting of materials.
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